
Vanish: Increasing Data Privacy with Self-Destructing Data

Roxana Geambasu Tadayoshi Kohno Amit A. Levy Henry M. Levy

University of Washington
{roxana, yoshi, levya, levy}@cs.washington.edu

Abstract
Today’s technical and legal landscape presents
formidable challenges to personal data privacy. First,
our increasing reliance on Web services causes personal
data to be cached, copied, and archived by third parties,
often without our knowledge or control. Second, the
disclosure of private data has become commonplace due
to carelessness, theft, or legal actions.

Our research seeks to protect the privacy of past,
archived data — such as copies of emails maintained
by an email provider — against accidental, malicious,
and legal attacks. Specifically, we wish to ensure that
all copies of certain data become unreadable after a user-
specified time, without any specific action on the part of
a user, and even if an attacker obtains both a cached copy
of that data and the user’s cryptographic keys and pass-
words.

This paper presents Vanish, a system that meets this
challenge through a novel integration of cryptographic
techniques with global-scale, P2P, distributed hash ta-
bles (DHTs). We implemented a proof-of-concept Van-
ish prototype to use both the million-plus-node Vuze Bit-
Torrent DHT and the restricted-membership OpenDHT.
We evaluate experimentally and analytically the func-
tionality, security, and performance properties of Vanish,
demonstrating that it is practical to use and meets the
privacy-preserving goals described above. We also de-
scribe two applications that we prototyped on Vanish: a
Firefox plugin for Gmail and other Web sites and a Van-
ishing File application.

1 Introduction

We target the goal of creating data that self-destructs or
vanishes automatically after it is no longer useful. More-
over, it should do so without any explicit action by the
users or any party storing or archiving that data, in such
a way that all copies of the data vanish simultaneously
from all storage sites, online or offline.

Numerous applications could benefit from such self-
destructing data. As one example, consider the case
of email. Emails are frequently cached, stored, or
archived by email providers (e.g., Gmail, or Hotmail),
local backup systems, ISPs, etc. Such emails may cease
to have value to the sender and receiver after a short pe-
riod of time. Nevertheless, many of these emails are pri-
vate, and the act of storing them indefinitely at interme-
diate locations creates a potential privacy risk. For ex-
ample, imagine that Ann sends an email to her friend
discussing a sensitive topic, such as her relationship with
her husband, the possibility of a divorce, or how to ward
off a spurious lawsuit (see Figure 1(a)). This email
has no value as soon as her friend reads it, and Ann
would like that all copies of this email — regardless of
where stored or cached — be automatically destroyed af-
ter a certain period of time, rather than risk exposure in
the future as part of a data breach, email provider mis-
management [41], or a legal action. In fact, Ann would
prefer that these emails disappear early — and not be
read by her friend — rather than risk disclosure to unin-
tended parties. Both individuals and corporations could
benefit from self-destructing emails.

More generally, self-destructing data is broadly appli-
cable in today’s Web-centered world, where users’ sen-
sitive data can persist “in the cloud” indefinitely (some-
times even after the user’s account termination [61]).
With self-destructing data, users can regain control over
the lifetimes of their Web objects, such as private mes-
sages on Facebook, documents on Google Docs, or pri-
vate photos on Flickr.

Numerous other applications could also benefit from
self-destructing data. For example, while we do not con-
done their actions, the high-profile cases of several politi-
cians [4, 62] highlight the relevance for self-destructing
SMS and MMS text messages. The need for self-
destructing text messages extends to the average user as
well [42, 45]. As a news article states, “don’t ever say
anything on e-mail or text messaging that you don’t want

Ann Carla

Hotmail Gmail

Husband's lawyer

Future
subpoena

archived
copy

(a) Example Scenario.

“This message will self-destruct in 16 hours”

“Decapsulate this email”
Decapsulated email content

popup window

(b) Vanishing Emails plugin for Gmail.

Figure 1: Example Scenario and Vanish Email Screenshot. (a) Ann wants to discuss her marital relationship with her friend,
Carla, but does not want copies stored by intermediate services to be used in a potential child dispute trial in the future. (b) The
screenshot shows how Carla reads a vanishing email that Ann has already sent to her using our Vanish Email Firefox plugin for
Gmail.

to come back and bite you [42].” Some have even argued
that the right and ability to destroy data are essential to
protect fundamental societal goals like privacy and lib-
erty [34, 44].

As yet another example, from a data sanitation per-
spective, many users would benefit from self-destructing
trash bins on their desktops. These trash bins would pre-
serve deleted files for a certain period of time, but af-
ter a timeout the files would self-destruct, becoming un-
available even to a forensic examiner (or anyone else,
including the user). Moreover, the unavailability of these
files would be guaranteed even if the forensic exam-
iner is given a pristine copy of the hard drive from be-
fore the files self-destructed (e.g., because the machines
were confiscated as part of a raid). Note that employ-
ing a whole disk encryption scheme is not sufficient, as
the forensic examiner might be able to obtain the user’s
encryption passwords and associated cryptographic keys
through legal means. Other time-limited temporary files,
like those that Microsoft Word periodically produces in
order to recover from a crash [17], could similarly benefit
from self-destructing mechanisms.

Observation and Goals. A key observation in these ex-
amples is that users need to keep certain data for only
a limited period of time. After that time, access to that
data should be revoked for everyone — including the le-
gitimate users of that data, the known or unknown enti-
ties holding copies of it, and the attackers. This mech-
anism will not be universally applicable to all users or
data types; instead, we focus in particular on sensitive
data that a user would prefer to see destroyed early rather
than fall into the wrong hands.

Motivated by the above examples, as well as our ob-
servation above, we ask whether it is possible to create a
system that can permanently delete data after a timeout:

1. even if an attacker can retroactively obtain a pristine
copy of that data and any relevant persistent crypto-
graphic keys and passphrases from before that time-
out, perhaps from stored or archived copies;

2. without the use of any explicit delete action by the
user or the parties storing that data;

3. without needing to modify any of the stored or
archived copies of that data;

4. without the use of secure hardware; and
5. without relying on the introduction of any new

external services that would need to be deployed
(whether trusted or not).

A system achieving these goals would be broadly ap-
plicable in the modern digital world as we’ve previously
noted, e.g., for files, private blog posts, on-line docu-
ments, Facebook entries, content-sharing sites, emails,
messages, etc. In fact, the privacy of any digital content
could potentially be enhanced with self-deleting data.

However, implementing a system that achieves this
goal set is challenging. Section 2 describes many natural
approaches that one might attempt and how they all fall
short. In this paper we focus on a specific self-deleting
data scheme that we have implemented, using email as
an example application.

Our Approach. The key insight behind our approach
and the corresponding system, called Vanish, is to lever-
age the services provided by decentralized, global-scale
P2P infrastructures and, in particular, Distributed Hash
Tables (DHTs). As the name implies, DHTs are designed

to implement a robust index-value database on a col-
lection of P2P nodes [64]. Intuitively, Vanish encrypts
a user’s data locally with a random encryption key not
known to the user, destroys the local copy of the key, and
then sprinkles bits (Shamir secret shares [49]) of the key
across random indices (thus random nodes) in the DHT.

Our choice of DHTs as storage systems for Vanish
stems from three unique DHT properties that make them
attractive for our data destruction goals. First, their huge
scale (over 1 million nodes for the Vuze DHT [28]),
geographical distribution of nodes across many coun-
tries, and complete decentralization make them robust
to powerful and legally influential adversaries. Second,
DHTs are designed to provide reliable distributed stor-
age [35, 56, 64]; we leverage this property to ensure that
the protected data remains available to the user for a de-
sired interval of time. Last but not least, DHTs have an
inherent property that we leverage in a unique and non-
standard way: the fact that the DHT is constantly chang-
ing means that the sprinkled information will naturally
disappear (vanish) as the DHT nodes churn or internally
cleanse themselves, thereby rendering the protected data
permanently unavailable over time. In fact, it may be
impossible to determine retroactively which nodes were
responsible for storing a given value in the past.

Implementation and Evaluation. To demonstrate the
viability of our approach, we implemented a proof-of-
concept Vanish prototype, which is capable of using ei-
ther Bittorrent’s Vuze DHT client [3] or the PlanetLab-
hosted OpenDHT [54]. The Vuze-based system can sup-
port 8-hour timeouts in the basic Vanish usage model
and the OpenDHT-based system can support timeouts
up to one week.1 We built two applications on top of
the Vanish core — a Firefox plugin for Gmail and other
Web sites, and a self-destructing file management appli-
cation — and we intend to distribute all of these as open
source packages in the near future. While prototyping on
existing DHT infrastructures not designed for our pur-
pose has limitations, it allows us to experiment at scale,
have users benefit immediately from our Vanish appli-
cations, and allow others to build upon the Vanish core.
Figure 1(b) shows how a user can decapsulate a vanish-
ing email from her friend using our Gmail plugin (com-
plete explanation of the interface and interactions is pro-
vided in Section 5). Our performance evaluation shows
that simple, Vanish-local optimizations can support even
latency-sensitive applications, such as our Gmail plugin,
with acceptable user-visible execution times.

Security is critical for our system and hence we con-
sider it in depth. Vanish targets post-facto, retroactive at-
tacks; that is, it defends the user against future attacks on

1We have an external mechanism to extend Vuze timeouts beyond
8 hours, which we describe later.

old, forgotten, or unreachable copies of her data. For ex-
ample, consider the subpoena of Ann’s email conversa-
tion with her friend in the event of a divorce. In this con-
text, the attacker does not know what specific content to
attack until after that content has expired. As a result the
attacker’s job is very difficult, since he must develop an
infrastructure capable of attacking all users at all times.
We leverage this observation to estimate the cost for such
an attacker, which we deem too high to justify a viable
threat. While we target no formal security proofs, we
evaluate the security of our system both analytically and
experimentally. For our experimental attacks, we lever-
age Amazon’s EC2 cloud service to create a Vuze de-
ployment and to emulate attacks against medium-scale
DHTs.

Contributions. While the basic idea of our approach is
simple conceptually, care must be taken in handling and
evaluating the mechanisms employed to ensure its secu-
rity, practicality, and performance. Looking ahead, and
after briefly considering other tempting approaches for
creating self-destructing data (Section 2), the key contri-
butions of this work are to:

• identify the principal requirements and goals for
self-destructing data (Section 3);

• propose a novel method for achieving these goals
that combines cryptography with decentralized,
global-scale DHTs (Section 4);

• demonstrate that our prototype system and appli-
cations are deployable today using existing DHTs,
while achieving acceptable performance, and exam-
ine the tensions between security and availability
for such deployments (Section 5);

• experimentally and analytically evaluate the
privacy-preservation capabilities of our DHT-based
system (Section 6).

Together, these contributions provide the foundation
for empowering users with greater control over the life-
times of private data scattered across the Internet.

2 Candidate Approaches

A number of existing and seemingly natural approaches
may appear applicable to achieving our objectives. Upon
deeper investigation, however, we find that none of these
approaches are sufficient to achieve the goals enumerated
in Section 1. We consider these strawman approaches
here and use them to further motivate our design con-
straints in Section 3.

The most obvious approach would require users to ex-
plicitly and manually delete their data or install a cron
job to do that. However, because Web-mails and other
Web data are stored, cached, or backed up at numer-
ous places throughout the Internet or on Web servers,

this approach does not seem plausible. Even for a self-
destructing trash bin, requiring the user to explicitly
delete data is incompatible with our goals. For example,
suppose that the hard disk fails and is returned for repairs
or thrown out [15]; or imagine that a laptop is stolen and
the thief uses a cold-boot [32] attack to recover its pri-
mary whole-disk decryption keys (if any). We wish to
ensure data destruction even in cases such as these.

Another tempting approach might be to use a stan-
dard public key or symmetric encryption scheme, as pro-
vided by systems like PGP and its open source counter-
part, GPG. However, traditional encryption schemes are
insufficient for our goals, as they are designed to pro-
tect against adversaries without access to the decryption
keys. Under our model, though, we assume that the at-
tacker will be able to obtain access to the decryption
keys, e.g., through a court order or subpoena.2

A potential alternative to standard encryption might be
to use forward-secure encryption [6, 13], yet our goal
is strictly stronger than forward secrecy. Forward se-
crecy means that if an attacker learns the state of the
user’s cryptographic keys at some point in time, they
should not be able to decrypt data encrypted at an earlier
time. However, due to caching, backup archives, and the
threat of subpoenas or other court orders, we allow the at-
tacker to either view past cryptographic state or force the
user to decrypt his data, thereby violating the model for
forward-secure encryption. For similar reasons, plus our
desire to avoid introducing new trusted agents or secure
hardware, we do not use other cryptographic approaches
like key-insulated [5, 23] and intrusion-resilient [21, 22]
cryptography. Finally, while exposure-resilient cryptog-
raphy [11, 24, 25] allows an attacker to view parts of a
key, we must allow an attacker to view all of the key.

Another approach might be to use steganography [48],
deniable encryption [12], or a deniable file system [17].
The idea is that one could hide, deny the contents of, or
deny the existence of private historical data, rather than
destroying it. These approaches are also attractive but
hard to scale and automate for many applications, e.g.,
generating plausible cover texts for emails and photos. In
addition to the problems observed with deniable file sys-
tems in [17] and [38], deniable file systems would also
create additional user hassles for a trash bin application,
whereas our approach could be made invisible to the user.

For online, interactive communications systems, an
ephemeral key exchange process can protect derived
symmetric keys from future disclosures of asymmetric
private keys. A system like OTR [1, 10] is particularly at-

2U.S. courts are debating whether citizens are required to disclose
private keys, although the ultimate verdict is unclear. We thus target
technologies robust against a verdict in either direction [29, 40]. Other
countries such as the U.K. [43] require release of keys, and coercion or
force may be an issue in yet other countries.

tractive, but as the original OTR paper observes, this ap-
proach is not directly suited for less-interactive email ap-
plications, and similar arguments can be made for OTR’s
unsuitability for the other above-mentioned applications
as well.

An approach with goals similar to ours (except for
the goal of allowing users to create self-destructing ob-
jects without having to establish asymmetric keys or
passphrases) is the Ephemerizer family of solutions [39,
46, 47]. These approaches require the introduction of
one or more (possibly thresholded) trusted third parties
which (informally) escrow information necessary to ac-
cess the protected contents. These third parties destroy
this extra data after a specified timeout. The biggest risks
with such centralized solutions are that they may either
not be trustworthy, or that even if they are trustworthy,
users may still not trust them, hence limiting their adop-
tion. Indeed, many users may be wary to the use of dedi-
cated, centralized trusted third-party services after it was
revealed that the Hushmail email encryption service was
offering the cleartext contents of encrypted messages to
the federal government [59]. This challenge calls for
a decentralized approach with fewer real risks and per-
ceived risks.

A second lesson can be learned from the Ephemer-
izer solutions in that, despite their introduction several
years ago, these approaches have yet to see widespread
adoption. This may in part be due to the perceived trust
issues mentioned above, but an additional issue is that
these solutions require the creation of new, supported and
maintained services. We theorize that solutions that re-
quire new infrastructures have a greater barrier to adop-
tion than solutions that can “parasitically” leverage exist-
ing infrastructures. A variant of this observation leads us
to pursue approaches that do not require secure hardware
or other dedicated services.

3 Goals and Assumptions

To support our target applications (self-destructing
emails, Facebook messages, text messages, trash bins,
etc.), we introduce the notion of a vanishing data ob-
ject (VDO). A VDO encapsulates the user’s data (such
as a file or message) and prevents its contents from per-
sisting indefinitely and becoming a source of retroactive
information leakage. Regardless of whether the VDO is
copied, transmitted, or stored in the Internet, it becomes
unreadable after a predefined period of time even if an
attacker retroactively obtains both a pristine copy of the
VDO from before its expiration, and all of the user’s
past persistent cryptographic keys and passwords. Fig-
ure 2 illustrates the above properties of VDOs by show-
ing the timeline for a typical usage of and attack against
a VDO. We crystallize the assumptions underlying our

Attacker

Service

User

Begins
attack

all VDO
copies
expire

TimeT1T1 T5T5

Obtains VDO

T2T2 T3T3 T4T4 T1: User creates VDO;

T2: Service archives a pristine
 copy of the VDO;

T3: All copies of VDO expire;

T4: Attacker decides to attack
 this VDO;

T5: Attacker obtains pristine
 VDO copy from service or
 user; copy is unreadable

Figure 2: Timeline for VDO usage and attack.

VDO model and the central aspects of the threat model
below.

Assumptions. Our VDO abstraction and Vanish system
make several key assumptions:

1. Time-limited value. The VDO will be used to en-
capsulate data that is only of value to the user for a
limited period of time.

2. Known timeout. When a user encapsulates data in a
VDO, she knows the approximate lifetime that she
wants for her VDO.

3. Internet connectivity. Users are connected to the In-
ternet when interacting with VDOs.

4. Dispensability under attack. Rather than risk expo-
sure to an adversary, the user prefers the VDO to be
destroyed, even if prematurely.

We consider encapsulation of data that only needs to
be available for hours or days; e.g., certain emails, Web
objects, SMSs, trash bin files, and others fall into this
category. Internet connectivity is obviously required for
many of our applications already, such as sending and
receiving emails. More generally, the promise of ubiqui-
tous connectivity makes this assumption reasonable for
many other applications as well. Internet connectivity is
not required for deletion, i.e., a VDO will become un-
readable even if connectivity is removed from its storage
site (or if that storage site is offline). Finally, Vanish is
designed for use with data that is private, but whose per-
sistence is not critical. That is, while the user prefers that
the data remain accessible until the specified timeout, its
premature destruction is preferable to its disclosure.

Goals. Having stated these assumptions, we target the
following functional goals and properties for Vanish:

1. Destruction after timeout. A VDO must expire au-
tomatically and without any explicit action on the
part of its users or any party storing a copy of the
VDO. Once expired, the VDO must also be inac-
cessible to any party who obtains a pristine copy of
the VDO from prior to its expiration.

2. Accessible until timeout. During its lifetime, a
VDO’s contents should be available to legitimate
users.

3. Leverage existing infrastructures. The system must
leverage existing infrastructures. It must not rely on
external, special-purpose dedicated services.

4. No secure hardware. The system must not require
the use of dedicated secure hardware.

5. No new privacy risks. The system should not intro-
duce new privacy risks to the users.

A corollary of goal (1) is that the VDO will become
unavailable to the legitimate users after the timeout,
which is compatible with our applications and assump-
tion of time-limited value.

Our desire to leverage existing infrastructure (goal (3))
stems from our belief that special-purpose services may
hinder adoption. As noted previously, Hushmail’s dis-
closure of the contents of users’ encrypted emails to the
federal government [59] suggests that, even if the cen-
tralized service or a threshold subset of a collection of
centralized services is trustworthy, users may still be un-
willing to trust them.

As an example of goal (5), assume that Ann sends
Carla an email without using Vanish, and then another
email using Vanish. If an attacker cannot compromise
the privacy of the first email, then we require that the
same attacker — regardless of how powerful — cannot
compromise the privacy of the second email.

In addition to these goals, we also seek to keep the
VDO abstraction as generic as possible. In Vanish, the
process of encapsulating data in a VDO does not require
users to set or remember passwords or manage crypto-
graphic keys. However, to ensure privacy under stronger
threat models, Vanish applications may compose VDOs
with traditional encryption systems like PGP and GPG.
In this case, the user will naturally need to manipulate
the PGP/GPG keys and passphrases.

Threat Models. The above list enumerates the intended
properties of the system without the presence of an ad-
versary. We now consider the various classes of poten-
tial adversaries against the Vanish system, as well as the
desired behavior of our system in the presence of such
adversaries.

The central security goal of Vanish is to ensure the
destruction of data after a timeout, despite potential ad-
versaries who might attempt to access that data after its
timeout. Obviously, care must be taken in defining what
a plausible adversary is, and we do that below and in Sec-
tion 6. But we also stress that we explicitly do not seek
to preserve goal (2) — accessible prior to a timeout —
in the presence of adversaries. As previously noted, we
believe that users would prefer to sacrifice availability
pre-timeout in favor of assured destruction for the types
of data we are protecting. For example, we do not defend
against denial of service attacks that could prevent read-
ing of the data during its lifetime. Making this assump-
tion allows us to focus on the primary novel insights in
this work: methods for leveraging decentralized, large-
scale P2P networks in order to make data vanish over
time.

We therefore focus our threat model and subsequent
analyses on attackers who wish to compromise data pri-
vacy. Two key properties of our threat model are:

1. Trusted data owners. Users with legitimate access
to the same VDOs trust each other.

2. Retroactive attacks on privacy. Attackers do not
know which VDOs they wish to access until after
the VDOs expire.

The former aspect of the threat model is straightforward,
and in fact is a shared assumption with traditional en-
cryption schemes: it would be impossible for our sys-
tem to protect against a user who chooses to leak or
permanently preserve the cleartext contents of a VDO-
encapsulated file through out-of-band means. For exam-
ple, if Ann sends Carla a VDO-encapsulated email, Ann
must trust Carla not to print and store a hard-copy of the
email in cleartext.

The latter aspect of the threat model — that the at-
tacker does not know the identity of a specific VDO of
interest until after its expiration — was discussed briefly
in Section 1. For example, email or SMS subpoenas typi-
cally come long after the user sends a particular sensitive
email. Therefore, our system defends the user against
future attacks against old copies of private data.

Given the retroactive restriction, an adversary would
have to do some precomputation prior to the VDO’s ex-
piration. The precise form of precomputation will de-
pend on the adversary in question. The classes of ad-
versaries we consider include: the user’s employer, the
user’s ISP, the user’s web mail provider, and unrelated
malicious nodes on the Internet. For example, foreshad-
owing to Section 6, we consider an ISP that might spy
on the connections a user makes to the Vuze DHT on
the off chance that the ISP will later be asked to assist
in the retroactive decapsulation of the user’s VDO. Sim-
ilarly, we consider the potential for an email service to
proactively try to violate the privacy of VDOs prior to
expiration, for the same reason. Although we deem both
situations unlikely because of public perception issues
and lack of incentives, respectively, we can also provide
defenses against such adversaries.

Finally, we stress that we do not seek to provide pri-
vacy against an adversary who gets a warrant to intercept
future emails. Indeed, such an attacker would have an ar-
senal of attack vectors at his disposal, including not only
a priori access to sensitive emails but also keyloggers
and other forensic tools [37].

4 The Vanish Architecture

We designed and implemented Vanish, a system capa-
ble of satisfying all of the goals listed in Section 3. A
key contribution of our work is to leverage existing, de-
centralized, large-scale Distributed Hash Tables (DHTs).

After providing a brief overview of DHTs and introduc-
ing the insights that underlie our solution, we present our
system’s architecture and components.

Overview of DHTs. A DHT is a distributed, peer-to-
peer (P2P) storage network consisting of multiple partic-
ipating nodes [35, 56, 64]. The design of DHTs varies,
but DHTs like Vuze generally exhibit a put/get interface
for reading and storing data, which is implemented inter-
nally by three operations: lookup, get, and store. The
data itself consists of an (index,value) pair. Each node in
the DHT manages a part of an astronomically large index
name space (e.g., 2160 values for Vuze). To store data,
a client first performs a lookup to determine the nodes
responsible for the index; it then issues a store to the re-
sponsible node, who saves that (index,value) pair in its
local DHT database. To retrieve the value at a particular
index, the client would lookup the nodes responsible for
the index and then issue get requests to those nodes. In-
ternally, a DHT may replicate data on multiple nodes to
increase availability.

Numerous DHTs exist in the Internet, including
Vuze, Mainline, and KAD. These DHTs are commu-
nal, i.e., any client can join, although DHTs such as
OpenDHT [54] only allow authorized nodes to join.

Key DHT-related Insights. Three key properties of
DHTs make them extremely appealing for use in the con-
text of a self-destructing data system:

1. Availability. Years of research in availability in
DHTs have resulted in relatively robust properties
of today’s systems, which typically provide good
availability of data prior to a specific timeout. Time-
outs vary, e.g., Vuze has a fixed 8-hour timeout,
while OpenDHT allows clients to choose a per-data-
item timeout of up to one week.

2. Scale, geographic distribution, and decentraliza-
tion. Measurement studies of the Vuze and Main-
line DHTs estimate in excess of one million si-
multaneously active nodes in each of the two net-
works [28]. The data in [63] shows that while the
U.S. is the largest single contributor of nodes in
Vuze, a majority of the nodes lie outside the U.S.
and are distributed over 190 countries.

3. Churn. DHTs evolve naturally and dynamically
over time as new nodes constantly join and old
nodes leave. The average lifetime of a node in
the DHT varies across networks and has been mea-
sured from minutes on Kazaa [30] to hours on
Vuze/Azureus [28].

The first property provides us with solid grounds for
implementing a useful system. The second property
makes DHTs more resilient to certain types of attacks
than centralized or small-scale systems. For example,

K

C = EK(D)

World-wide

DHT

Lk1

k2

...

kn

k1

kn

k2
Locator

Figure 3: The Vanish system architecture.

while a centrally administered system can be compelled
to release data by an attacker with legal leverage [59],
obtaining subpoenas for multiple nodes storing a VDO’s
key pieces would be significantly harder, and in some
cases impossible, due to their distribution under different
administrative and political domains.

Traditionally, DHT research has tried to counter the
negative effects of churn on availability. For our pur-
poses, however, the constant churn in the DHT is an ad-
vantage, because it means that data stored in DHTs will
naturally and irreversibly disappear over time as the DHT
evolves. In many cases, trying to determine the contents
of the DHT one week in the past — let alone several
months or years — may be impossible, because many
of the nodes storing DHT data will have left or changed
their locations in the index space. For example, in Vuze,
a node changes its location in the DHT whenever its IP
address or port number changes, which typically happens
periodically for dynamic IP addresses (e.g., studies show
that over 80% of the IPs change within 7 days [65]).
This self-cleansing property of DHTs, coupled with its
scale and global decentralization, makes them a felici-
tous choice for our self-destructing data system.

Vanish. Vanish is designed to leverage one or more
DHTs. Figure 3 illustrates the high-level system archi-
tecture. At its core, Vanish takes a data object D (and
possibly an explicit timeout T), and encapsulates it into
a VDO V .

In more detail, to encapsulate the data D, Vanish picks
a random data key, K, and encrypts D with K to obtain
a ciphertext C. Not surprisingly, Vanish uses threshold
secret sharing [58] to split the data key K into N pieces
(shares) K1, . . . ,KN . A parameter of the secret sharing is
a threshold that can be set by the user or by an application
using Vanish. The threshold determines how many of the
N shares are required to reconstruct the original key. For
example, if we split the key into N = 20 shares and the
threshold is 10 keys, then we can compute the key given
any 10 of the 20 shares. In this paper we often refer to the
threshold ratio (or simply threshold) as the percentage
of the N keys required, e.g., in the example above the
threshold ratio is 50%.

Once Vanish has computed the key shares, it picks at
random an access key, L. It then uses a cryptographically
secure pseudorandom number generator [7], keyed by L,
to derive N indices into the DHT, I1, . . . , IN . Vanish then
sprinkles the N shares K1, . . . ,KN at these pseudorandom
locations throughout the DHT; specifically, for each i ∈

{1, . . . ,N}, Vanish stores the share Ki at index Ii in the
DHT. If the DHT allows a variable timeout, e.g., with
OpenDHT, Vanish will also set the user-chosen timeout
T for each share. Once more than (N−threshold) shares
are lost, the VDO becomes permanently unavailable.

The final VDO V consists of (L,C,N, threshold) and
is sent over to the email server or stored in the file system
upon encapsulation. The decapsulation of V happens in
the natural way, assuming that it has not timed out. Given
VDO V , Vanish (1) extracts the access key, L, (2) derives
the locations of the shares of K, (3) retrieves the required
number of shares as specified by the threshold, (4) recon-
structs K, and (5) decrypts C to obtain D.

Threshold Secret Sharing, Security, and Robustness.
For security we rely on the property that the shares
K1, . . . ,KN will disappear from the DHT over time,
thereby limiting a retroactive adversary’s ability to ob-
tain a sufficient number of shares, which must be ≥ the
threshold ratio. In general, we use a ratio of < 100%,
otherwise the loss of a single share would cause the loss
of the key. DHTs do lose data due to churn, and therefore
a smaller ratio is needed to provide robust storage prior
to the timeout. We consider all of these issues in more
detail later; despite the conceptual simplicity of our ap-
proach, significant care and experimental analyses must
be taken to assess the durability of our use of large-scale,
decentralized DHTs.

Extending the Lifetime of a VDO. For certain uses,
the default timeout offered by Vuze might be too lim-
iting. For such cases, Vanish provides a mechanism to
refresh VDO shares in the DHT. While it may be tempt-
ing at first to simply use Vuze’s republishing mechanism
for index-value pairs, doing so would re-push the same
pairs (I1,K1), . . . ,(IN ,KN) periodically, until the timeout.
This would, in effect, increase the exposure of those key
shares to certain attackers. Hence, our refresh mecha-
nism retrieves the original data key K before its time-
out, re-splits it, obtaining a fresh set of shares, and de-
rives new DHT indices I1, . . . , IN as a function of L and
a weakly synchronized clock. The weakly synchronized
clock splits UTC time into roughly 8-hour epochs and
uses the epoch number as part of the input to the location
function. Decapsulations then query locations generated
from both the current epoch number and the neighboring
epochs, thus allowing clocks to be weakly synchronized.

Naturally, refreshes require periodic Internet connec-
tivity. A simple home-based setup, where a broadband
connected PC serves as the user’s refreshing proxy, is in
our view and experience a very reasonable choice given
today’s highly connected, highly equipped homes. In
fact, we have been using this setup in our in-house de-
ployment of Vanish in order to achieve longer timeouts
for our emails (see Section 5).

Using multiple or no DHTs. As an extension to the
scheme above, it is possible to store the shares of the
data key K in multiple DHTs. For example, one might
first split K into two shares K′ and K′′ such that both
shares are required to reconstruct K. K′ is then split into
N′ shares and sprinkled in the Vuze DHT, while K′′ is
split into N′′ shares and sprinkled in OpenDHT. Such an
approach would allow us to argue about security under
different threat models, using OpenDHT’s closed access
(albeit small scale) and Vuze’s large scale (albeit com-
munal) access.

An alternate model would be to abandon DHTs and to
store the key shares on distributed but managed nodes.
This approach bears limitations similar to Ephemerizer
(Section 2). A hybrid approach might be to store shares
of K′ in a DHT and shares of K′′ on managed nodes. This
way, an attacker would have to subvert both the privately
managed system and the DHT to compromise Vanish.

Forensic Trails. Although not a common feature in to-
day’s DHTs, a future DHT or managed storage system
could additionally provide a forensic trail for monitoring
accesses to protected content. A custom DHT could, for
example, record the IP addresses of the clients that query
for particular indices and make that information available
to the originator of that content. The existence of such a
forensic trail, even if probabilistic, could dissuade third
parties from accessing the contents of VDOs that they
obtain prior to timeout.

Composition. Our system is not designed to protect
against all attacks, especially those for which solutions
are already known. Rather, we designed both the sys-
tem and our applications to be composable with other
systems to support defense-in-depth. For example, our
Vanish Gmail plugin can be composed with GPG in or-
der to avoid VDO sniffing by malicious email services.
Similarly, our system can compose with Tor to ensure
anonymity and throttle targeted attacks.

5 Prototype System and Applications

We have implemented a Vanish prototype capable of in-
tegrating with both Vuze and OpenDHT. In this section,
we demonstrate that (1) by leveraging existing, unmod-
ified DHT deployments we can indeed achieve the core
functions of vanishing data, (2) the resulting system sup-
ports a variety of applications, and (3) the performance of
VDO operations is reasonable. We focus our discussions
on Vuze because its large scale and dynamic nature make
its analysis both more interesting and more challenging.
A key observation derived from our study is a tension in
setting VDO parameters (N and threshold) when target-
ing both high availability prior to the timeout and high
security. We return to this tension in Section 6.

To integrate Vanish with the Vuze DHT, we made two

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 2 4 6 8 10 12 14 16 18

P
ro

b.
 o

f V
D

O
 a

va
ila

bi
lit

y

Time (h)

N=1,
(no secret sharing)

N=50,
Threshold=90%

N=100,
Threshold=99%

Figure 4: VDO availability in the Vuze-based Vanish sys-
tem. The availability probability for single-key VDOs (N = 1)
and for VDOs using secret sharing, averaged over 100 runs.
Secret sharing is required to ensure pre-timeout availability and
post-timeout destruction. Using N = 50 and a threshold of 90%
achieves these goals.

minor changes (< 50 lines of code) to the existing Vuze
BitTorrent client: a security measure to prevent lookup
sniffing attacks (see Section 6.2) and several optimiza-
tions suggested by prior work [28] to achieve reasonable
performance for our applications. All these changes are
local to Vanish nodes and do not require adoption by any
other nodes in the Vuze DHT.

5.1 Vuze Background

The Vuze (a.k.a. Azureus) DHT is based on the Kadem-
lia [35] protocol. Each DHT node is assigned a “random”
160-bit ID based on its IP and port, which determines the
index ranges that it will store. To store an (index,value)
pair in the DHT, a client looks up 20 nodes with IDs clos-
est to the specified index and then sends store messages
to them. Vuze nodes republish the entries in their cache
database every 30 minutes to the other 19 nodes closest
to the value’s index in order to combat churn in the DHT.
Nodes further remove from their caches all values whose
store timestamp is more than 8 hours old. This pro-
cess has a 1-hour grace period. The originator node must
re-push its 8-hour-old (index,value) pairs if it wishes to
ensure their persistence past 8 hours.

5.2 VDO Availability and Expiration in
Vuze

We ran experiments against the real global Vuze P2P net-
work and evaluated the availability and expiration guar-
antees it provides. Our experiments pushed 1,000 VDO
shares to pseudorandom indices in the Vuze DHT and
then polled for them periodically. We repeated this ex-
periment 100 times over a 3-day period in January 2009.
Figure 4 shows the average probability that a VDO re-
mains available as a function of the time since creation,
for three different N and threshold values. For these
experiments we used the standard 8-hour Vuze timeout
(i.e., we did not use our refreshing proxy to re-push
shares).

Decapsulate VDO

(a) Vanishing Facebook messages. (b) Google Doc with vanishing parts.

Figure 5: The Web-wide applicability of Vanish. Screenshots of two example uses of vanishing data objects on the Web. (a)
Carla is attempting to decapsulate a VDO she received from Ann in a Facebook message. (b) Ann and Carla are drafting Ann’s
divorce document using a Google Doc; they encapsulate sensitive, draft information inside VDOs until they finalize their position.

The N = 1 line shows the lifetime for a single share,
which by definition does not involve secret sharing.
The single-share VDO exhibits two problems: non-
negligible probabilities for premature destruction (≈1%
of the VDOs time out before 8 hours) and prolonged
availability (≈5% of the VDOs continue to live long after
8 hours). The cause for the former effect is churn, which
leads to early loss of the unique key for some VDOs.
While the cause for the latter effect demands more inves-
tigation, we suspect that some of the single VDO keys
are stored by DHT peers running non-default configu-
rations. These observations suggest that the naive (one
share) approach for storing the data key K in the DHT
meets neither the availability nor the destruction goals of
VDOs, thereby motivating our need for redundancy.

Secret sharing can solve the two lifetime problems
seen with N = 1. Figure 4 shows that for VDOs with
N = 50 and threshold of 90%, the probability of prema-
ture destruction and prolonged availability both become
vanishingly small (< 10−3). Other values for N ≥ 20
achieve the same effect for thresholds of 90%. However,
using very high threshold ratios leads to poor pre-timeout
availability curves: e.g., N = 100 and a threshold of 99%
leads to a VDO availability period of 4 hours because
the loss of only two shares share makes the key unre-
coverable. We will show in Section 6 that increasing the
threshold increases security. Therefore, the choice of N
and the threshold represents a tradeoff between security
and availability. We will investigate this tradeoff further
in Section 6.

5.3 Vanish Applications
We built two prototype applications that use a Van-
ish daemon running locally or remotely to ensure self-
destruction of various types of data.

FireVanish. We implemented a Firefox plugin for the
popular Gmail service that provides the option of sending
and reading self-destructing emails. Our implementa-
tion requires no server-side changes. The plugin uses the
Vanish daemon both to transform an email into a VDO
before sending it to Gmail and similarly for extracting
the contents of a VDO on the receiver side.

Our plugin is implemented as an extension of FireGPG
(an existing GPG plugin for Gmail) and adds Vanish-
related browser overlay controls and functions. Using
our FireVanish plugin, a user types the body of her email
into the Gmail text box as usual and then clicks on a
“Create a Vanishing Email” button that the plugin over-
lays atop the Gmail interface. The plugin encapsulates
the user’s typed email body into a VDO by issuing a
VDO-create request to Vanish, replaces the contents of
the Gmail text box with an encoding of the VDO, and
uploads the VDO email to Gmail for delivery. The user
can optionally wrap the VDO in GPG for increased pro-
tection against malicious services. In our current imple-
mentation, each email is encapsulated with its own VDO,
though a multi-email wrapping would also be possible
(e.g., all emails in the same thread).

When the receiving user clicks on one of his emails,
FireVanish inspects whether it is a VDO email, a PGP
email, or a regular email. Regular emails require no fur-
ther action. PGP emails are first decrypted and then in-
spected to determine whether the underlying message is a
VDO email. For VDO emails, the plugin overlays a link
“Decapsulate this email” atop Gmail’s regular interface
(shown previously in Figure 1(b)). Clicking on this link
causes the plugin to invoke Vanish to attempt to retrieve
the cleartext body from the VDO email. If the VDO has
not yet timed out, then the plugin pops up a new window
showing the email’s cleartext body; otherwise, an error
message is displayed.

FireVanish Extension for the Web. Self-destructing
data is broadly applicable in today’s Web-oriented world,
in which users often leave permanent traces on many
Web sites [61]. Given the opportunity, many privacy-
concerned users would likely prefer that certain mes-
sages on Facebook, documents on Google Docs, or in-
stant messages on Google Talk disappear within a short
period of time.

To make Vanish broadly accessible for Web usage,
FireVanish provides a simple, generic, yet powerful, in-
terface that permits all of these applications. Once the
FireVanish plugin has been installed, a Firefox user can
select text in any Web page input box, right click on that
selected text, and cause FireVanish to replace that text in-
line with an ecapsulated VDO. Similarly, when reading a
Web page containing a VDO, a user can select that VDO
and right click to decapsulate it; in this case, FireVanish
leaves the VDO in place and displays the cleartext in a
separate popup window.

Figure 5 shows two uses of FireVanish to encapsulate
and read VDOs within Facebook and Google Docs. The
screenshots demonstrate a powerful concept: FireVanish
can be used seamlessly to empower privacy-aware users
with the ability to limit the lifetime of their data on Web
applications that are unaware of Vanish.

Vanishing Files. Finally, we have implemented a van-
ishing file application, which can be used directly or by
other applications, such as a self-destructing trash bin
or Microsoft Word’s autosave. Users can wrap sensi-
tive files into self-destructing VDOs, which expire after
a given timeout. In our prototype, the application creates
a VDO wrapping one or more files, deletes the cleartext
files from disk, and stores the VDO in their place. This
ensures that, even if an attacker copies the raw bits from
the laptop’s disks after the timeout, the data within the
VDO will be unavailable. Like traditional file encryp-
tion, Vanishing Files relies upon existing techniques for
securely shredding data stored on disks or memory.

5.4 Performance Evaluation
We measured the performance of Vanish for our applica-
tions, focusing on the times to encapsulate and decapsu-
late a VDO. Our goals were to (1) identify the system’s
performance bottlenecks and propose optimizations, and
(2) determine whether our Vuze-based prototype is fast
enough for our intended uses. Our measurements use an
Intel T2500 DUO with 2GB of RAM, Java 1.6, and a
broadband network.

To identify system bottlenecks, we executed VDO
operations and measured the times spent in the three
main runtime components: DHT operations (stor-
ing and getting shares), Shamir secret sharing opera-
tions (splitting/recomposing the data key), and encryp-

0

20

40

60

80

100

120

140

0 50 100 150 200

Number of shares (N)

T
im

e
 (

s
e

c
)

Store shares in DHT

Get shares from DHT

(a) Scalability of DHT operations.

19.00.082124.3200

14.00.08294.7150

9.20.08264.5100

4.70.08232.850

2.00.08216.920

0.90.08210.510

With
prepush

Without
prepush

Decapsulate
VDO

Encapsulate VDO

Time (seconds)

N

(b) VDO operation execution times.

Figure 6: Performance in the Vuze-based Vanish system.
(a) The scalability of DHT operation times as a function of the
number of shares being gotten from or stored in the DHT (re-
sults are averages over 20 trials and error bars indicate stan-
dard deviations). (b) Total VDO encapsulation (with and with-
out pre-push) and decapsulation times for FireVanish for a 2KB
email, N = 50, and threshold 90%.

tion/decryption. In general, the DHT component ac-
counts for over 99% of the execution time for all Vanish
operations on small and medium-size data (up to tens of
MB, like most emails). For much larger data sizes (e.g.,
files over hundreds of MB), the encryption/decryption
becomes the dominating component.

Our experiments also revealed the importance of con-
figuring Vuze’s parameters on our latency-aware appli-
cations. With no special tuning, Vuze took 4 minutes to
store 50 shares, even using parallel stores. By employing
several Vuze optimizations we lowered the 50-share store
time by a factor of 7 (to 32 seconds). Our most effective
optimization — significantly lowering Vuze’s UDP time-
out based on suggestions from previous research [28] —
proved non-trivial, though. In particular, as we deployed
Vanish within our group, we learned that different In-
ternet providers (e.g., Qwest, Comcast) exhibited utterly
different network behaviors and latencies, making the
setting of any one efficient value for the timeout impossi-
ble. Hence, we implemented a control-loop-based mech-
anism by which Vanish automatically configures Vuze’s
UDP timeout based on current network conditions. The
optimization requires only node-local changes to Vuze.

Figure 6(a) shows how the optimized DHT operation
times scale with the number of shares (N), for a fixed
threshold of 90%, over a broadband connection (Com-
cast). Scaling with N is important in Vanish, as its se-

curity is highly dependent on this parameter. The graph
shows that getting DHT shares are relatively fast — un-
der 5 seconds for N = 50, which is reasonable for emails,
trash bins, etc. The cost of storing VDO shares, however,
can become quite large (about 30 seconds for N = 50),
although it grows liniarly with the number of shares. To
mask the store delays from the user, we implemented a
simple optimization, where Vanish proactively generates
data keys and pre-pushes shares into the DHT. This op-
timization leads to an unnoticeable DHT encapsulation
time of 82ms.

Combining the results in this section and Section 6,
we believe that parameters of N = 50 and a threshold of
90% provide an excellent tradeoff of security and per-
formance. With these parameters and the simple pre-
push optimization we’ve described, user-visible latency
for Vanish operations, such as creating or reading a Van-
ish email, is relatively low — just a few seconds for a
2KB email, as shown in Figure 6(b).

5.5 Anecdotal Experience with FireVanish

We have been using the FireVanish plugin within our
group for several weeks. We also provided Vanish to
several people outside of our group. Our preliminary ex-
perience has confirmed the practicality and convenience
of FireVanish. We also learned a number of lessons even
in this short period; for example, we found our minimal-
istic interface to be relatively intuitive, even for a non-CS
user to whom we gave the system, and the performance
is quite acceptable, as we noted above.

We also identified several limitations in the current im-
plementation, some that we solved and others that we
will address in the future. For example, in the begin-
ning we found it difficult to search for encrypted emails
or data, since their content is encrypted and opaque to
the Web site. For convenience, we modified FireVan-
ish to allow users to construct emails or other data by
mixing together non-sensitive cleartext blocks with self-
destructing VDOs, as illustrated in Figure 5(b). This fa-
cilitates identifying information over and above the sub-
ject line. We did find that certain types of communica-
tions indeed require timeouts longer than 8 hours. Hence,
we developed and used Vanish in a proxy setting, where
a Vanish server runs on behalf of a user at an online lo-
cation (e.g., the user’s home) and refreshes VDO shares
as required to achieve each VDO’s intended timeout in
8-hour units. The user can then freely execute the Vanish
plugin from any connection-intermittent location (e.g., a
laptop).

We are planning an open-source release of the soft-
ware in the near future and are confident that this release
will teach us significantly more about the usability, limi-
tations, and security of our system.

6 Security Analyses

To evaluate the security of Vanish, we seek to assess
two key properties: that (1) Vanish does not introduce
any new threats to privacy (goal (5) in Section 3), and
(2) Vanish is secure against adversaries attempting to
retroactively read a VDO post-expiration.

It is straightforward to see that Vanish adds no new
privacy risks. In particular, the key shares stored in the
DHT are not a function of the encapsulated data D; only
the VDO is a function of D. Hence, if an adversary
is unable to learn D when the user does not use Van-
ish, then the adversary would be unable to learn D if the
user does use Vanish. There are three caveats, however.
First, external parties, like the DHT, might infer informa-
tion about who is communicating with whom (although
the use of an anonymization system like Tor can allevi-
ate this concern). Second, given the properties of Van-
ish, users might choose to communicate information that
they might not communicate otherwise, thus amplifying
the consequences of any successful data breach. Third,
the use of Vanish might raise new legal implications. In
particular, the new “eDiscovery” rules embraced by the
U.S. may require a user to preserve emails and other data
once in anticipation of a litigious action. The exact legal
implications to Vanish are unclear; the user might need to
decapsulate and save any relevant VDOs to prevent them
from automatic expiration.

We focus the remainder of this section on attacks tar-
geted at retroactively revoking the privacy of data encap-
sulated within VDOs (this attack timeline was shown in
Figure 2). We start with a broad treatment of such attacks
and then dive deeply into attacks that integrate adversar-
ial nodes directly into the DHT.

6.1 Avoiding Retroactive Privacy Attacks

Attackers. Our motivation is to protect against retroac-
tive data disclosures, e.g., in response to a subpoena,
court order, malicious compromise of archived data, or
accidental data leakage. For some of these cases, such
as the subpoena, the party initiating the subpoena is the
obvious “attacker.” The final attacker could be a user’s
ex-husband’s lawyer, an insurance company, or a pros-
ecutor. But executing a subpoena is a complex process
involving many other actors, including potentially: the
user’s employer, the user’s ISP, the user’s email provider,
unrelated nodes on the Internet, and other actors. For our
purposes, we define all the involved actors as the “adver-
sary.”

Attack Strategies. The architecture and standard prop-
erties of the DHT cause significant challenges to an ad-
versary who does not perform any computation or data
interception prior to beginning the attack. First, the key

shares are unlikely to remain in the DHT much after the
timeout, so the adversary will be incapable of retrieving
the shares directly from the DHT. Second, even if the ad-
versary could legally subpoena the machines that hosted
the shares in the past, the churn in Vuze makes it diffi-
cult to determine the identities of those machines; many
of the hosting nodes would have long disappeared from
the network or changed their DHT index. Finally, with
Vuze nodes scattered throughout the globe [63], gaining
legal access to those machines raises further challenges.
In fact, these are all reasons why the use of a DHT such
as Vuze for our application is compelling.

We therefore focus on what an attacker might do prior
to the expiration of a VDO, with the goal of amplifying
his ability to reveal the contents of the VDO in the future.
We consider three principal strategies for such precom-
putation.

Strategy (1): Decapsulate VDO Prior to Expiration.
An attacker might try to obtain a copy of the VDO and
revoke its privacy prior to its expiration. This strategy
makes the most sense when we consider, e.g., an email
provider that proactively decapsulates all VDO emails in
real-time in order to assist in responding to future sub-
poenas. The natural defense would be to further encap-
sulate VDOs in traditional encryption schemes, like PGP
or GPG, which we support with our FireVanish applica-
tion. The use of PGP or GPG would prevent the web-
mail provider from decapsulating the VDO prior to expi-
ration. And, by the time the user is forced to furnish her
PGP private keys, the VDO would have expired. For the
self-destructing trash bin and the Vanishing Files appli-
cation, however, the risk of this attack is minimal.

Strategy (2): Sniff User’s Internet Connection. An at-
tacker might try to intercept and preserve the data users
push into or retrieve from the DHT. An ISP or employer
would be most appropriately positioned to exploit this
vector. Two natural defenses exist for this: the first
might be to use a DHT that by default encrypts com-
munications between nodes. Adding a sufficient level
of encryption to existing DHTs would be technically
straightforward assuming that the ISP or employer were
passive and hence not expected to mount man-in-the-
middle attacks. For the encryption, Vanish could com-
pose with an ephemeral key exchange system in order to
ensure that these encrypted communications remain pri-
vate even if users’ keys are later exposed. Without mod-
ifying the DHT, the most natural solution is to compose
with Tor [19] to tunnel one’s interactions with a DHT
through remote machines. One could also use a different
exit node for each share to counter potentially malicious
Tor exit nodes [36, 66], or use Tor for only a subset of
the shares.

Strategy (3): Integrate into DHT. An attacker might try

to integrate itself into the DHT in order to: create copies
of all data that it is asked to store; intercept internal
DHT lookup procedures and then issue get requests of
his own for learned indices; mount a Sybil attack [26]
(perhaps as part of one of the other attacks); or mount an
Eclipse attack [60]. Such DHT-integrated attacks deserve
further investigation, and we provide such an analysis in
Section 6.2.

We will show from our experiments in Section 6.2 that
an adversary would need to join the 1M-node Vuze DHT
with approximately 80,000—90,000 malicious nodes to
mount a store-based attack and capture a reasonable
percentage of the VDOs (e.g., 25%). Even if possible,
sustaining such an attack for an extended period of time
would be prohibitively expensive (close to $860K/year in
Amazon EC2 computation and networking costs). The
lookup-based attacks are easy to defeat using localized
changes to Vanish clients. The Vuze DHT already in-
cludes rudimentary defenses against the Sybil attack and
a full deployment of Vanish could leverage the existing
body of works focused on hardening DHTs against Sybil
and Eclipse attacks [9, 14, 16, 26, 51].

Deployment Decisions. Given attack strategies (1) and
(2), a user of FireVanish, Vanishing Files, or any future
Vanish-based application is faced with several options:
to use the basic Vanish system or to compose Vanish with
other security mechanisms like PGP/GPG or Tor. The
specific decision is based on the threats to the user for
the application in question.

Vanish is oriented towards personal users concerned
that old emails, Facebook messages, text messages, or
files might come back to “bite” them, as eloquently put
in [42]. Under such a scenario, an ISP trying to assist in
future subpoenas seems unlikely, thus we argue that com-
posing Vanish with Tor is unnecessary for most users.
The use of Tor seems even less necessary for some of the
threats we mentioned earlier, like a thief with a stolen
laptop.

Similarly, it is reasonable to assume that email
providers will not proactively decapsulate and archive
Vanishing Emails prior to expiration. One factor is the
potential illegality of such accesses under the DMCA,
but even without the DMCA this seems unlikely. There-
fore, users can simply employ the FireVanish Gmail plu-
gin without needing to exchange public keys with their
correspondents. However, because our plugin extends
FireGPG, any user already familiar with GPG could
leverage our plugin’s GPG integration.

Data Sanitization. In addition to ensuring that Van-
ish meets its security and privacy goals, we must ver-
ify that the surrounding operating environment does not
preserve information in a non-self-destructing way. For
this reason, the system could leverage a broad set of ap-

proaches for sanitizing the Vanish environment, includ-
ing secure methods for overwriting data on disk [31], en-
crypting virtual memory [50], and leveraging OS support
for secure deallocation [15]. However, even absent those
approaches, forensic analysis would be difficult if at-
tempted much later than the data’s expiration for the rea-
sons we’ve previously discussed: by the time the forensic
analysis is attempted relevant data is likely to have dis-
appeared from the user’s machine, the churn in the DHT
would have made shares (and nodes) vanish irrevocably.

6.2 Privacy Against DHT-Integrated Ad-
versaries

We now examine whether an adversary who interacts
with the DHT prior to a VDO’s expiration can, in the fu-
ture, aid in retroactive attacks against the VDO’s privacy.
During such a precomputation phase, however, the at-
tacker does not know which VDOs (or even which users)
he might eventually wish to attack. While the attacker
could compile a list of worthwhile targets (e.g., politi-
cians, actors, etc.), the use of Tor would thwart such tar-
geted attacks. Hence, the principle strategy for the at-
tacker would be to create a copy of as many key shares
as possible. Moreover, the attacker must do this continu-
ously — 24x7 — thereby further amplifying the burden
on the attacker.

Such an attacker might be external to the DHT —
simply using the standard DHT interface in order to ob-
tain key shares — or internal to the DHT. While the
former may be the only available approach for DHTs
like OpenDHT, the approach is also the most limiting
to an attacker since the shares are stored at pseudoran-
domly generated and hence unpredictable indices. An at-
tacker integrating into a DHT like Vuze has significantly
more opportunities and we therefore focus on such DHT-
integrating adversaries here.

Experimental Methodology. We ran extensive exper-
iments on a private deployment of the Vuze DHT. In
each experiment, a set of honest nodes pushed VDO
shares into the DHT and retrieved them at random in-
tervals of time, while malicious nodes sniffed stores
and lookups.3 Creating our own Vuze deployment al-
lowed us to experiment with various system parameters
and workloads that we would not otherwise have been
able to manipulate. Additionally, experimenting with at-
tacks against Vuze at sufficient scale would have been
prohibitively costly for us, just as it would for an attacker.

Our experiments used 1,000, 2,000, 4,500, and 8,000-
node DHTs, which are significantly larger than those
used for previous empirical DHT studies (e.g. 1,000

3Vuze get messages do not reveal additional information about val-
ues stored in the DHT, so we do not consider them.

nodes in [53]). For the 8,000-node experiments we used
200 machine instances of Amazon’s EC2 [2] compute
cloud. For smaller experiments we used 100 of Emu-
lab’s 3GHz, 2GB machines [27]. In general, memory is
the bottleneck, as each Vuze node must run in a separate
process to act as a distinct DHT node. Approximately 50
Vuze nodes fit on a 2-GB machine.

Churn (node death and birth) is modeled by a Pois-
son distribution as in [53]. Measurements of DHT net-
works have observed different median lifetime distribu-
tions, e.g., 2.4 minutes for Kazaa [30], 60 minutes for
Gnutella [57], and 5 hours with Vuze [28] (although this
measurement may be biased towards longer-lived nodes).
We believe that these vast differences stem from different
content and application types that rely on these networks
(e.g., the difference between audio and video clips). We
chose a 2-hour median node lifetime, which provides in-
sight into the availability—security tradeoffs under high
churn.

6.2.1 The Store Sniffing Attack

We first examine a store sniffing attack in which the
adversary saves all of the index-to-value mappings it re-
ceives from peers via store messages. Such an attacker
might receive a VDO’s key shares in one of two ways: di-
rectly from the user during a VDO’s creation or refresh,
or via replication. In Vuze, nodes replicate their cached
index-to-value mappings every 30 minutes by pushing
each mapping to 20 nodes whose IDs are closest to the
mapping’s index.

Effects of VDO Parameters on Security. Our first goal
is to assess how security is affected by the VDO param-
eters N (the number of key shares distributed for each
VDO) and the key threshold (the percent of the N shares
required to decrypt a VDO). Figure 7(a) plots the prob-
ability that an attacker can capture sufficient key shares
to revoke the privacy of a given VDO as a function of
N and the threshold. This figure assumes the attacker
has compromised 5% of the nodes in a 1,000-node DHT.
Not surprisingly, as the number of shares N increases, the
attacker’s success probability drops significantly. Simi-
larly, increasing the threshold increases security (i.e., de-
creases the attacker’s success probability).

Availability is also affected by the VDO parameters
and the tradeoff is shown in Figure 7(b). Here we see the
maximum timeout (i.e., the VDO’s lifetime) as a function
of N and the threshold. The maximum VDO timeout is
the largest time at which 99% of a set of 1,000 VDOs
remained available in our experiment. The timeout is
capped by our 10-hour experimental limit. From the fig-
ure, we see that increasing N improves not only security,
but also availability. We also see that smaller thresholds
support longer timeouts, because the system can toler-

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 50 60 70 80 90 100

P
ro

ba
bi

lit
y

of
 V

D
O

 c
om

pr
om

is
e

Key threshold (%)

N=1
N=10
N=20
N=50

N=100
N=150

(a) Parameters and security.

 0

 1

 2

 3

 4

 5

 6

 7

 8

 9

 10

 50 60 70 80 90 100

M
ax

im
um

 V
D

O
 ti

m
eo

ut
 (

h)

Key threshold (%)

N=1
N=10
N=20
N=50

N=100
N=150

(b) Parameters and availability.

 0

 100

 200

 300

 400

 500

 600

 1000 2000 3000 4000 5000 6000 7000 8000

M
ax

im
um

 a
tta

ck
er

 s
iz

e
to

le
ra

te
d

DHT size

Threshold=80%
Threshold=70%
Threshold=60%
Threshold=50%

(c) Tolerated attacker sizes.

 0

 20

 40

 60

 80

 100

 0 1 2 3 4 5 6 7 8

%
 o

f s
ha

re
s

st
ill

 a
va

ila
bl

e
at

 ti
m

e
T

Time T (h)

Vuze network
Lifetime=3h
Lifetime=2h
Lifetime=1h

(d) Churn effect on availability.

Figure 7: Analysis of the store sniffing attack. Fig. (a): the attacker’s success probability with increasing N and key threshold for
a 1000-node DHT with 50 malicious nodes. Larger N and high thresholds (≥ 65%) provide good security. Fig. (b): maximum VDO
timeout supported for a .99 availability level. Large N with smaller key thresholds (≤ 70%) provide useful VDO timeouts. Fig. (c):
maximum number of attacker nodes that a DHT can tolerate, while none of the 1,000 VDOs we pushed were compromised. Fig. (a),
(b), and (c) assume 2-hour churn. Fig. (d): the single-share availability decreases over time for different churn models in our private
network and for the real Vuze network.

ate more share loss. The choice of threshold thus in-
volves a tradeoff between security and availability: high
thresholds provide more security and low thresholds pro-
vide longer lifetime. For example, if a lifetime of only 4
hours is needed — which might be reasonable for certain
emails or SMSs — then choosing N = 50 and threshold
75% leads to good security and performance. If a timeout
of 8 hours is required, N = 100 and threshold of 70% is
a good tradeoff for the 2-hour churn. Thus, by tuning N
and the key threshold, we can obtain high security, good
availability, and reasonable performance in the context
of a small 1,000-node DHT and 5% attackers.

Attacker Sizes. We now consider how many attacker
nodes a DHT deployment of a given size can toler-
ate with small chance that the attacker succeeds in pre-
obtaining a sufficient number of shares for any VDO.
Figure 7(c) shows the maximum attacker sizes tolerated
by DHTs of increasing sizes, for various key thresh-
olds. The values are calculated so as to ensure that none
of the 1,000 VDOs we experimented with was compro-
mised. We computed these values from experiments us-
ing N = 150, 2-hour churn, and various attacker sizes
for each DHT size. For an 8,000-node DHT, even if 600
nodes are controlled by a store-sniffing attacker, the ad-
versary would still not obtain any of our 1,000 VDOs.

More important, Figure 7(c) suggests that the num-
ber of attackers that the DHT can tolerate grows linearly
with DHT size. Assuming this trend continues further,
we estimate that, in a 1M-node DHT, an attacker with
35,000 nodes would still have less than 10−3 probability
of recording a sufficient number of shares to compromise
a single VDO with N = 150 and a threshold of 70%.

We have also experimented with a different metric
of success: requiring an attacker to obtain enough key
shares to compromise at least 25% of all VDOs. Con-
cretely, for N = 150 and a threshold of 80%, our exper-
iment with a 8,000 node DHT required the attacker to
control over 710 nodes. This value also appears to grow

linearly in the size of the DHT; extrapolating to a 1M-
node DHT, such an attack would require at least 80,000
malicious nodes. We believe that inserting this number of
nodes into the DHT, while possible for limited amounts
of time, is too expensive to do continuously (we provide
a cost estimate below).

Finally, we note that our refresh mechanism for ex-
tending Vuze timeouts (explained in Section 4) provides
good security properties in the context of store sniffing
attacks. Given that our mechanism pushes new shares
in each epoch, an attacker who fails to capture sufficient
shares in one epoch must start anew in the next epoch
and garner the required threshold from zero.

Setting Parameters for the Vuze Network. These re-
sults provide a detailed study of the store sniffing attack
in the context of a 2-hour churn model induced on a pri-
vate Vuze network. We also ran a selected set of similar
availability and store attack experiments against a pri-
vate network with a 3-hour churn model, closer to what
has been measured for Vuze.4 The resulting availability
curve for the 3-hour churn now closely resembles the one
in the real Vuze network (see Figure 7(d)). In particular,
for both the real network and the private network with
a 3-hour churn model, a ratio of 90% and N ≥ 20 are
enough to ensure VDO availability of 7 hours with .99
probability. Thus, from an availability standpoint, the
longer lifetimes allow us to raise the threshold to 90% to
increase security.

From a security perspective, our experiments show
that for an 8,000-node DHT, 3-hour churn model, and
VDOs using N = 50 and threshold 90%, the attacker re-
quires at least 820 nodes in order to obtain ≥25% of the
VDOs. This extrapolates to a requirement of ≈87,000
nodes on Vuze to ensure attack effectiveness. Return-
ing to our cost argument, while cloud computing in a
system such as Amazon EC2 is generally deemed in-

4We used VDOs of N = 50 and thresholds of 90% for these experi-
ments.

expensive [18], the cost to mount a year-long 87,000-
node attack would be over $860K for processing and In-
ternet traffic alone, which is sufficiently high to thwart
an adversary’s compromise plans in the context of our
personal use targets (e.g., seeking sensitive advice from
friends over email). Of course, for larger N (e.g., 150), an
attacker would be required to integrate even more nodes
and at higher cost. Similarly, the cost of an attack would
increase as more users join the Vuze network.

Overall, to achieve good performance, security and
availability, we recommend using N = 50 and a thresh-
old of 90% for VDOs in the current Vuze network. Based
on our experiments, we conclude that under these param-
eters, an attacker would be required to compromise be-
tween 8—9% of the Vuze network in order to be effective
in his attack.

6.2.2 The Lookup Sniffing Attack

In addition to seeing store requests, a DHT-integrated
adversary also sees lookup requests. Although Vuze
only issues lookups prior to storing and getting data
objects, the lookups pass through multiple nodes and
hence provide additional exposure for VDO key shares.
In a lookup sniffing attack, whenever an attacker node re-
ceives a lookup for an index, it actively fetches the value
stored at that index, if any. While more difficult to handle
than the passive store attack, the lookup attack could
increase the adversary’s effectiveness.

Fortunately, a simple, node-local change to the Vuze
DHT thwarts this attack. Whenever a Vanish node wants
to store to or retrieve a value from an index I, the node
looks up an obfuscated index I′, where I′ is related to but
different from I. The client then issues a store/get for
the original index I to the nodes returned in response to
the lookup for I′. In this way, the retrieving node greatly
reduces the number of other nodes (and potential attack-
ers) who see the real index.

One requirement governs our simple choice of an ob-
fuscation function: the same set of replicas must be re-
sponsible for both indexes I and I′. Given that Vuze has
1M nodes and that IDs are uniformly distributed (they
are obtained via hashing), all mappings stored at a cer-
tain node should share approximately the higher-order
log2(106) ≈ 20 bits with the IDs of the node. Thus,
looking up only the first 20b of the 160b of a Vuze in-
dex is enough to ensure that the nodes resulted from the
lookup are indeed those in charge of the index. The
rest of the index bits are useless in lookups and can be
randomized, and are rehabilitated only upon sending the
final get/store to the relevant node(s). We conserva-
tively choose to randomize the last 80b from every index
looked up while retrieving or storing mappings.

Lacking full index information, the attacker would

have to try retrieving all of the possible indexes starting
with the obfuscated index (280 indexes), which is impos-
sible in a timely manner. This Vuze change was trivial
(only 10 lines of modified code) and it is completely lo-
cal to Vanish nodes. That is, the change does not require
adoption by any other nodes in the DHT to be effective.

6.2.3 Standard DHT Attacks

In the previous sections we offered an in-depth analysis
of two data confidentiality attacks in DHTs (store and
lookup sniffing), which are specific in the context of our
system. However, the robustness of communal DHTs to
more general attacks has been studied profusely in the
past and such analyses, proposed defenses, and limita-
tions are relevant to Vanish, as well. Two main types
of attacks identified by previous works are the Sybil at-
tack [26] and the Eclipse (or route hijacking) attack [60].
In the Sybil attack, a few malicious nodes assume a large
number of identities in the DHT. In the Eclipse attack,
several adversarial nodes can redirect most of the traffic
issued by honest nodes toward themselves by poisoning
their routing tables with malicious node contact informa-
tion [60].

The Vuze DHT already includes a rudimentary de-
fense against Sybil attacks by constraining the identity
of a Vuze node to a function of its IP address and port
modulo 1999. While this measure might be sufficient
for the early stages of a Vanish deployment, stronger
defenses are known, e.g., certified identities [26] and
periodic cryptographic puzzles [9] for defense against
Sybil attacks and various other defenses against Eclipse
attacks [14, 51]. Given that the core Vanish system
is network-agnostic, we could easily port our system
onto more robust DHTs implementing stronger defenses.
Moreover, if Vanish-style systems become popular, it
would also be possible to consider Vanish-specific de-
fenses that could leverage, e.g., the aforementioned tight
coupling between Vanish and the identities provided by
PGP public keys. Finally, while we have focused on the
Vuze DHT — and indeed its communal model makes
analyzing security more interesting and challenging —
Vanish could also split keys across multiple DHTs, or
even DHTs and managed systems, as previously noted
(Section 4). The different trust models, properties, and
risks in those systems would present the attacker with a
much more difficult task.

7 Related Work

We have discussed a large amount of related work in
Section 2 and throughout the text. As additional re-
lated work, the Adeona system also leverages DHTs
for increased privacy, albeit with significantly different
goals [55]. Several existing companies aim to achieve

similar goals to ours (e.g., self-destructing emails), but
with very different threat models (company servers must
be trusted) [20]. Incidents with Hushmail, however, may
lead users to question such trust models [59]. There also
exists research aimed at destroying archived data where
the data owner has the ability to explicitly and manu-
ally erase extra data maintained elsewhere, e.g., [8]; we
avoid such processes, which may not always succeed or
may be vulnerable to their own accidental copying or
disclosures. Finally, albeit with different goals and per-
spectives, Rabin proposes an information-theoretically
secure encryption system that leverages a decentralized
collection of dedicated machines that continuously serve
random pages of data [52], which is related to the lim-
ited storage model [33]. Communicants, who pre-share
symmetric keys, can download and xor specific pages to-
gether to derive a one-time pad. The commonality be-
tween our approach and Rabin’s is in the use of exter-
nal machines to assist in privacy; the model, reliance
on dedicated services, and pre-negotiation of symmetric
keys between communicants are among the central dif-
ferences.

8 Conclusions

Data privacy has become increasingly important in our
litigious and online society. This paper introduced a
new approach for protecting data privacy from attackers
who retroactively obtain, through legal or other means, a
user’s stored data and private decryption keys. A novel
aspect of our approach is the leveraging of the essen-
tial properties of modern P2P systems, including churn,
complete decentralization, and global distribution un-
der different administrative and political domains. We
demonstrated the feasibility of our approach by present-
ing Vanish, a proof-of-concept prototype based on the
Vuze global-scale DHT. Vanish causes sensitive infor-
mation, such as emails, files, or text messages, to irre-
versibly self-destruct, without any action on the user’s
part and without any centralized or trusted system. Our
measurement and experimental security analysis sheds
insight into the robustness of our approach to adversarial
attacks.

Our experience also reveals limitations of existing
DHTs for Vanish-like applications. In Vuze, for ex-
ample, the fixed data timeout and large replication fac-
tor present challenges for a self-destructing data system.
Therefore, one exciting direction of future research is to
redesign existing DHTs with our specific privacy appli-
cations in mind. Our plan to release the current Vanish
system will help to provide us with further valuable ex-
perience to inform future DHT designs for privacy appli-
cations.

9 Acknowledgements

We offer special thanks to Steve Gribble, Arvind Krish-
namurthy, Mark McGovern, Paul Ohm, Michael Piatek,
and our anonymous reviewers for their comments on the
paper. This work was supported by NSF grants NSF-
0846065, NSF-0627367, and NSF-614975, an Alfred P.
Sloan Research Fellowship, the Wissner-Slivka Chair,
and a gift from Intel Corporation.

References
[1] C. Alexander and I. Goldberg. Improved user authentication in

off-the-record messaging. In WPES, 2007.

[2] Amazon.com. Amazon elastic compute cloud (EC2). http://
aws.amazon.com/ec2/, 2008.

[3] Azureus. http://www.vuze.com/.

[4] BBC News. US mayor charged in SMS scandal. http://news.
bbc.co.uk/2/hi/americas/7311625.stm, 2008.

[5] M. Bellare and A. Palacio. Protecting against key exposure:
Strongly key-insulated encryption with optimal threshold. Appli-
cable Algebra in Engineering, Communication and Computing,
16(6), 2006.

[6] M. Bellare and B. Yee. Forward security in private key cryptog-
raphy. In M. Joye, editor, CT-RSA 2003, 2003.

[7] M. Blum and S. Micali. How to generate cryptographically strong
sequences of pseudo-random bits. In Proceedings of the 23rd
IEEE Symposium on Foundations of Computer Science (FOCS
’82), 1982.

[8] D. Boneh and R. Lipton. A revocable backup system. In USENIX
Security, 1996.

[9] N. Borisov. Computational puzzles as Sybil defenses. In Proc. of
the Intl. Conference on Peer-to-Peer Computing, 2006.

[10] N. Borisov, I. Goldberg, and E. Brewer. Off-the-record commu-
nication, or, why not to use PGP. In WPES, 2004.

[11] R. Canetti, Y. Dodis, S. Halevi, E. Kushilevitz, and A. Sahai.
Exposure-resilient functions and all-or-nothing transforms. In
B. Preneel, editor, EUROCRYPT 2000, volume 1807 of LNCS,
pages 453–469, Bruges, Belgium, May 14–18, 2000. Springer-
Verlag, Berlin, Germany.

[12] R. Canetti, C. Dwork, M. Naor, and R. Ostrovsky. Deniable en-
cryption. In B. S. K. Jr., editor, CRYPTO’97, 1997.

[13] R. Canetti, S. Halevi, and J. Katz. A forward-secure public-key
encryption scheme. In EUROCRYPT 2003, 2003.

[14] M. Castro, P. Druschel, A. Ganesh, A. Rowstron, and D. S. Wal-
lach. Secure routing for structured peer-to-peer overlay networks.
In Proc. of OSDI, 2002.

[15] J. Chow, B. Pfaff, T. Garfinkel, and M. Rosenblum. Shredding
your garbage: Reducing data lifetime through secure dealloca-
tion. In USENIX Security, 2005.

[16] T. Condie, V. Kacholia, S. Sankararaman, J. M. Hellerstein, and
P. Maniatis. Induced churn as shelter from routing table poison-
ing. In Proc. of NDSS, 2006.

[17] A. Czeskis, D. J. S. Hilaire, K. Koscher, S. D. Gribble, T. Kohno,
and B. Schneier. Defeating encrypted and deniable file systems:
TrueCrypt v5.1a and the case of the tattling OS and applications.
In 3rd USENIX HotSec, July 2008.

[18] M. Dama. Amazon EC2 scalable processing
power. http://www.maxdama.com/2008/08/
amazon-ec2-scalable-processing-power.html, 2008.

[19] R. Dingledine, N. Mathewson, and P. Syverson. Tor: The second-
generation onion router. In USENIX Security, 2004.

[20] Disappearing Inc. Disappearing Inc. product page. http://www.
specimenbox.com/di/ab/hwdi.html, 1999.

[21] Y. Dodis, M. K. Franklin, J. Katz, A. Miyaji, and M. Yung.
Intrusion-resilient public-key encryption. In CT-RSA 2003, vol-
ume 2612, pages 19–32. Springer-Verlag, Berlin, Germany, 2003.

[22] Y. Dodis, M. K. Franklin, J. Katz, A. Miyaji, and M. Yung.
A generic construction for intrusion-resilient public-key encryp-
tion. In T. Okamoto, editor, CT-RSA 2004, volume 2964 of
LNCS, pages 81–98, San Francisco, CA, USA, Feb. 23–27, 2004.
Springer-Verlag, Berlin, Germany.

[23] Y. Dodis, J. Katz, S. Xu, and M. Yung. Key-insulated public key
cryptosystems. In EUROCRYPT 2002, 2002.

[24] Y. Dodis, A. Sahai, and A. Smith. On perfect and adaptive se-
curity in exposure-resilient cryptography. In EUROCRYPT 2001,
volume 2045 of LNCS, pages 301–324. Springer-Verlag, Berlin,
Germany, 2001.

[25] Y. Dodis and M. Yung. Exposure-resilience for free: The case of
hierarchical ID-based encryption. In IEEE International Security
In Storage Workshop, 2002.

[26] J. R. Douceur. The sybil attack. In International Workshop on
Peer-to-Peer Systems, 2002.

[27] Emulab. Emulab – network emulation testbed. http://www.
emulab.net/, 2008.

[28] J. Falkner, M. Piatek, J. John, A. Krishnamurthy, and T. Ander-
son. Profiling a million user DHT. In Internet Measurement Con-
ference, 2007.

[29] D. Goodin. Your personal data just got permanently cached at
the US border. http://www.theregister.co.uk/2008/05/
01/electronic searches at us borders/, 2008.

[30] K. P. Gummadi, R. J. Dunn, S. Saroiu, S. D. Gribble, H. M. Levy,
and J. Zahorjan. Measurement, modeling, and analysis of a peer-
to-peer file-sharing workload. In Proc. of SOSP, 2003.

[31] P. Gutmann. Secure deletion of data from magnetic and solid-
state memory. In USENIX Security, 1996.

[32] J. A. Halderman, S. D. Schoen, N. Heninger, W. Clarkson,
W. Paul, J. A. Calandrino, A. J. Feldman, J. Appelbaum, and
E. W. Felten. Lest we remember: Cold boot attacks on encryption
keys. In USENIX Security, 2008.

[33] U. M. Maurer. Conditionally-perfect secrecy and a provably-
secure randomized cipher. Journal of Cryptology, 5:53–66, 1992.

[34] V. Mayer-Schoenberger. Useful Void: the art of forgetting in the
age of ubiquitous computing. Working Paper, John F. Kennedy
School of Government, Harvard University, 2007.

[35] P. Maymounkov and D. Mazieres. Kademlia: A peer-to-peer in-
formation system based on the XOR metric. In Proc. of Peer-to-
Peer Systems, 2002.

[36] D. McCoy, K. Bauer, D. Grunwald, T. Kohno, and D. Sicker.
Shining light in dark places: Understanding the Tor network. In
Privacy Enhancing Technologies Symposium, July 2008.

[37] D. McCullagh. Feds use keylogger to thwart PGP, Hushmail.
news.cnet.com/8301-10784 3-9741357-7.html, 2008.

[38] D. McCullagh. Security guide to customs-proofing your
laptop. http://www.news.com/8301-13578 3-9892897-38.
html, 2008.

[39] S. K. Nair, M. T. Dashti, B. Crispo, and A. S. Tanenbaum. A
hybrid PKI-IBC based ephemerizer system. In International In-
formation Security Conference, 2007.

[40] E. Nakashima. Clarity sought on electronic searches.
http://www.washingtonpost.com/wp-dyn/content/
article/2008/02/06/AR2008020604763.html, 2008.

[41] New York Times. F.B.I. Gained Unauthorized Access to E-
Mail. http://www.nytimes.com/2008/02/17/washington/
17fisa.html? r=1&hp=&adxnnl=1&oref=slogin&adxnnlx=
1203255399-44ri626iqXg7QNmwzoeRkA, 2008.

[42] News 24. Think before you SMS. http://www.news24.com/
News24/Technology/News/0,,2-13-1443 1541201,00.
html, 2004.

[43] Office of Public Sector Information. Regulation of Investigatory
Powers Act (RIPA), Part III – Investigation of Electronic Data
Protected by Encryption etc. http://www.opsi.gov.uk/acts/
acts2000/ukpga 20000023 en 8, 2000.

[44] P. Ohm. The Fourth Amendment right to delete. The Harvard
Law Review, 2005.

[45] PC Magazine. Messages can be forever. http://www.pcmag.
com/article2/0,1759,1634544,00.asp, 2004.

[46] R. Perlman. The Ephemerizer: Making data disappear. Journal
of Information System Security, 1(1), 2005.

[47] R. Perlman. File system design with assured delete. In Security
in Storage Workshop (SISW), 2005.

[48] F. A. P. Petitcolas, R. J. Anderson, and M. G. Kuhn. Information
hiding: A survey. Proceedings of the IEEE, 87(7), 1999.

[49] B. Poettering. ”ssss: Shamir’s Secret Sharing Scheme”. http:
//point-at-infinity.org/ssss/, 2006.

[50] N. Provos. Encrypting virtual memory. In USENIX Security,
2000.

[51] K. P. N. Puttaswamy, H. Zheng, and B. Y. Zhao. Securing struc-
tured overlays against identity attacks. IEEE Transactions on Par-
allel and Distributed Systems (TPDS), 2008.

[52] M. O. Rabin. Provably unbreakable hyper-encryption in the lim-
ited access model. In IEEE Information Theory Workshop on
Theory and Practice in Information-Theoretic Security, 2005.

[53] S. Rhea, D. Geels, T. Roscoe, and J. Kubiatowicz. Handling
churn in a DHT. In Proc. of the Annual Technical Conf., 2004.

[54] S. Rhea, B. Godfrey, B. Karp, J. Kubiatowicz, S. Ratnasamy,
S. Shenker, I. Stoica, and H. Yu. OpenDHT: A public DHT ser-
vice and its uses. In Proc. of ACM SIGCOMM, 2005.

[55] T. Ristenpart, G. Maganis, A. Krishnamurthy, and T. Kohno.
Privacy-preserving location tracking of lost or stolen devices:
Cryptographic techniques and replacing trusted third parties with
DHTs. In 17th USENIX Security Symposium, 2008.

[56] A. Rowstron and P. Druschel. Pastry: Scalable, decentralized
object location, and routing for large-scale peer-to-peer systems.
In Lecture Notes in Computer Science, 2001.

[57] S. Saroiu, P. K. Gummadi, and S. D. Gribble. A measurement
study of peer-to-peer file sharing systems. In Proc. of Multimedia
Computing and Networking, 2002.

[58] A. Shamir. How to share a secret. Commun. ACM, 22(11):612–
613, 1979.

[59] R. Singel. Encrypted e-mail company Hushmail spills
to feds. http://blog.wired.com/27bstroke6/2007/11/
encrypted-e-mai.html, 2007.

[60] A. Singh, T. W. Ngan, P. Druschel, and D. S. Wallach. Eclipse
attacks on overlay networks: Threats and defenses. In Proc. of
INFOCOM, 2006.

[61] Slashdot. http://tech.slashdot.org/article.pl?sid=09/
02/17/2213251&tid=267, 2009.

[62] Spitzer criminal complaint. http://nytimes.com/packages/
pdf/nyregion/20080310spitzer-complaint.pdf, 2008.

[63] M. Steiner and E. W. Biersack. Crawling Azureus. Technical
Report RR-08-223, 2008.

[64] I. Stoica, R. Morris, D. Karger, M. F. Kaashoek, and H. Balakr-
ishnan. Chord: A scalable peer-to-peer lookup service for internet
applications. In Proc. of ACM SIGCOMM, pages 149–160, 2001.

[65] Y. Xie, F. Yu, K. Achan, E. Gillum, M. Goldszmidt, and T. Wob-
ber. How dynamic are IP addresses? In Proc. of SIGCOMM,
2007.

[66] K. Zetter. Tor researcher who exposed embassy e-mail passwords
gets raided by Swedish FBI and CIA. http://blog.wired.
com/27bstroke6/2007/11/swedish-researc.html, 2007.

