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"
Distributed Key/Value Stores

m A simple put/get interface
m Great properties: scalability, availability, reliability
m Increasingly popular both within data centers and in P2P
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"
Distributed Key/Value Storage Services

m Increasingly, key/value stores are shared by many apps
Avoids per-app storage system deployment

m However, building apps atop today’s stores is challenging
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"
Challenge: Inflexible Key/Value Stores

m Applications have different (even conflicting) needs:
Avallability, security, performance, functionality

m But today’s key/value stores are one-size-fits-all
m Motivating example: our Vanish experience
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Motivating Example: Vanish [USENIX Security ‘09

m Vanish is a self-destructing data system built on Vuze

m Vuze problems for Vanish:
Fixed 8-hour data timeout

Overly aggressive replication, which hurts security

m Changes were simple, but deploying them was difficult:

Need Vuze engineer
Long deployment cycle

Hard to evaluate before
deployment
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Question:

How can a key/value store support many

applications with different needs?
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"
Extensible Key/Value Stores

m Allow apps to customize store’s functions
Different data lifetimes
Different numbers of replicas
Different replication intervals

m Allow apps to define new functions
Tracking popularity: data item counts the number of reads
Access logging: data item logs readers’ IPs

Adapting to context: data item returns different values to
different requestors
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Design Philosophy

m \We want an extensible key/value store

m But we want to keep it simple!
Allow apps to inject tiny code fragments (10s of lines of code)

Adding even a tiny amount of programmability into key/value
stores can be extremely powerful

m This paper shows how to build extensible P2P DHTs
We leverage our DHT experience to drive our design
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Outline

m Motivation

m Architecture
m Applications
m Conclusions
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"
Comet

m DHT that supports application-specific customizations

m Applications store active objects instead of passive values

Active objects contain small code snippets that control their
behavior in the DHT
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"
Comet’s Goals

m Flexibility
Support a wide variety of small, lightweight customizations

m [solation and safety
Limited knowledge, resource consumption, communication

m Lightweight
Low overhead for hosting nodes
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"
Active Storage Objects (ASOs)

m The ASO consists of data and code

The data is the value
The code is a set of handlers that are called on put/get

App L1 || App 2 || App 3
/[ Aso
. - . D\ data | | [ function onGet ()
=
\% ! _____ !D __________________________

16



"
Simple ASO Example

m Each replica keeps track of number of gets on an object

//éso.value = “Hello world!” h
ASO ’
Y aso.getCount = 0
data | 1
’ function onGet ()
code

4 self.getCount = self.getCount + 1

return {self.value, self.getCount}

“.end )

m The effect is powerful:
Difficult to track object popularity in today’s DHTs
Trivial to do so in Comet without DHT modifications
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Comet Architecture
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The ASO Extension API

Vanish

Adeona

P2P File Sharing

P2P Twitter

Measurement

Replication
Timeout

One-time values
Password access
Access logging
Smart tracker
Recursive gets
Publish / subscribe
Hierarchical pub/sub
Node lifetimes
Replica monitoring



"
The ASO Extension API

onPut(caller) onTimer() getSystemTime() |get(key, nodes)
onGet(caller) getNodeIP() put(key, data, nodes)
onUpdate(caller) getNodeID() lookup(key)
getASOKey/()
deleteSelf()

m Small yet powerful API for a wide variety of applications
We built over a dozen application customizations

m \We have explicitly chosen not to support:
Sending arbitrary messages on the Internet
Doing I/O operations
Customizing routing ... 20




"
The ASO Sandbox

1. Limit ASO’s knowledge and access
Use a standard language-based sandbox

Make the sandbox as small as possible (<5,000 LOC)
m  Start with tiny Lua language and remove unneeded functions

2. Limit ASO’s resource consumption
Limit per-handler bytecode instructions and memory
Rate-limit incoming and outgoing ASO requests

3. Restrict ASO’s DHT interaction

Prevent traffic amplification and DDoS attacks
ASOs can talk only to their neighbors, no recursive requests
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"
Comet Prototype

m \We built Comet on top of Vuze and Lua
We deployed experimental nodes on PlanetLab

m In the future, we hope to deploy at a large scale

Vuze engineer is particularly interested in Comet for
debugging and experimentation purposes
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"
Comet Applications

Security-enhanced replication
Vanish Flexible timeout
One-time values

Password-based access
Adeona .
Access logging

Smart Bittorrent tracker

P2P File Sharing o . cive gets*

Publish/subscribe

P2P TWIter | jierarchical pub/sub®

DHT-Internal node lifetimes
Measurement _ o
Replica monitoring

* Require signed ASOs (see paper)
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Three Examples

1. Application-specific DHT customization
2. Context-aware storage object
3. Self-monitoring DHT
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1. Application-Specific DHT Customization

m Example: customize the replication scheme

[function aso:selectReplicas (neighbors)

[...]

end

function aso:onTimer ()

neighbors = comet.lookup ()

comet.put(self, replicas)

_end

replicas = self.selectReplicas (neighbors)

J

m \We have implemented the Vanish-specific replication

Code i1s 41 lines in Lua
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2. Context-Aware Storage Object

m Traditional distributed trackers return a randomized
subset of the nodes

m Comet: a proximity-based distributed tracker
Peers put their IPs and Vivaldi coordinates at torrentID

On get, the ASO computes and returns the set of
closest peers to the requestor

m ASO has 37 lines of Lua code
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Proximity-Based Distributed Tracker
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"
3. Self-Monitoring DHT

m Example: monitor a remote node’s neighbors

Put a monitoring ASO that “pings” its neighbors periodically

-

aso.neighbors = {}

function aso:onTimer ()
neighbors = comet.lookup ()

end

-

self .neighbors[comet.systemTime ()] = neighbors

~

J

m Useful for internal measurements of DHTS

Provides additional visibility over external measurement
(e.g., NAT/firewall traversal)
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Example Measurement: Vuze Node Lifetimes
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Conclusions

m Extensibility allows a shared storage system to support
applications with different needs

m Comet is an extensible DHT that allows per-application
customizations

Limited interfaces, language sandboxing, and resource and
communication limits

Opens DHTs to a new set of stronger applications

m Extensibility is likely useful in data centers (e.g., S3):
Assured delete Storage location awareness
Logging and forensics Popularity
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