
Comet: An Active

Distributed Key-Value Store

Roxana Geambasu

Amit Levy

Yoshi Kohno

Arvind Krishnamurthy

Hank Levy

University of Washington

Distributed Key/Value Stores

 A simple put/get interface

 Great properties: scalability, availability, reliability

 Increasingly popular both within data centers and in P2P

2

Data center P2P

Dynamo

amazon.com

Distributed Key/Value Stores

 A simple put/get interface

 Great properties: scalability, availability, reliability

 Increasingly popular both within data centers and in P2P

3

Data center P2P

Dynamo

amazon.com

Voldemort

LinkedIn

Distributed Key/Value Stores

 A simple put/get interface

 Great properties: scalability, availability, reliability

 Increasingly popular both within data centers and in P2P

4

Data center P2P

Dynamo

amazon.com

Voldemort

LinkedIn

Cassandra

Facebook

Distributed Key/Value Stores

 A simple put/get interface

 Great properties: scalability, availability, reliability

 Increasingly popular both within data centers and in P2P

5

Data center P2P

Dynamo

amazon.com

Voldemort

LinkedIn

Cassandra

Facebook

Vuze DHT

Vuze

Distributed Key/Value Stores

 A simple put/get interface

 Great properties: scalability, availability, reliability

 Increasingly popular both within data centers and in P2P

6

Data center P2P

Dynamo

amazon.com

Voldemort

LinkedIn

Cassandra

Facebook

Vuze DHT

Vuze

uTorrent DHT

uTorrent

 Increasingly, key/value stores are shared by many apps

 Avoids per-app storage system deployment

 However, building apps atop today‟s stores is challenging

Distributed Key/Value Storage Services

7

Data center P2P

Amazon S3

Altexa
Photo

Bucket

Jungle

Disk
Vuze

App

One-

Swarm
Vanish

Vuze DHT

Challenge: Inflexible Key/Value Stores

 Applications have different (even conflicting) needs:

 Availability, security, performance, functionality

 But today‟s key/value stores are one-size-fits-all

 Motivating example: our Vanish experience

8

App 1 App 2 App 3

Key/value

store

 Vanish is a self-destructing data system built on Vuze

 Vuze problems for Vanish:

 Fixed 8-hour data timeout

 Overly aggressive replication, which hurts security

 Changes were simple, but deploying them was difficult:

 Need Vuze engineer

 Long deployment cycle

 Hard to evaluate before

deployment

Motivating Example: Vanish [USENIX Security „09]

Vuze

App
Vanish

Vuze DHT

Vuze

App
Vanish

Vuze DHT

9

Vuze Vanish

Vuze DHT

Vuze Vanish

Vuze DHT

Vuze Vanish

Vuze DHT

Vuze Vanish

Vuze DHT

Future

app

Vuze

App
Vanish

Future

app

Vuze DHT

 Vanish is a self-destructing data system built on Vuze

 Vuze problems for Vanish:

 Fixed 8-hour data timeout

 Overly aggressive replication, which hurts security

 Changes were simple, but deploying them was difficult:

 Need Vuze engineer

 Long deployment cycle

 Hard to evaluate before

deployment

Motivating Example: Vanish [USENIX Security „09]

Vuze

App
Vanish

Vuze DHT

Vuze

App
Vanish

Vuze DHT

10

Vuze Vanish

Vuze DHT

Vuze Vanish

Vuze DHT

Vuze Vanish

Vuze DHT

Vuze Vanish

Vuze DHT

Future

app

Vuze

App
Vanish

Future

app

Vuze DHT

Question:

How can a key/value store support many

applications with different needs?

Extensible Key/Value Stores

 Allow apps to customize store‟s functions

 Different data lifetimes

 Different numbers of replicas

 Different replication intervals

 Allow apps to define new functions

 Tracking popularity: data item counts the number of reads

 Access logging: data item logs readers‟ IPs

 Adapting to context: data item returns different values to

different requestors

11

Design Philosophy

 We want an extensible key/value store

 But we want to keep it simple!

 Allow apps to inject tiny code fragments (10s of lines of code)

 Adding even a tiny amount of programmability into key/value

stores can be extremely powerful

 This paper shows how to build extensible P2P DHTs

 We leverage our DHT experience to drive our design

12

Outline

 Motivation

 Architecture

 Applications

 Conclusions

13

Comet

 DHT that supports application-specific customizations

 Applications store active objects instead of passive values

 Active objects contain small code snippets that control their

behavior in the DHT

14

App 1 App 2 App 3

Comet

Active object Comet node

Comet‟s Goals

 Flexibility

 Support a wide variety of small, lightweight customizations

 Isolation and safety

 Limited knowledge, resource consumption, communication

 Lightweight

 Low overhead for hosting nodes

15

Active Storage Objects (ASOs)

 The ASO consists of data and code

 The data is the value

 The code is a set of handlers that are called on put/get

16

App 1 App 2 App 3

Comet

ASO

data

code

function onGet()

[…]

end

 Each replica keeps track of number of gets on an object

 The effect is powerful:

 Difficult to track object popularity in today‟s DHTs

 Trivial to do so in Comet without DHT modifications

Simple ASO Example

17

ASO

data

code

aso.value = “Hello world!”

aso.getCount = 0

function onGet()

self.getCount = self.getCount + 1

return {self.value, self.getCount}

end

Local Store

Comet Architecture

18Routing Substrate

K1 ASO1

ASO2K2

DHT Node

T
ra

d
it
io

n
a

l

D
H

T
C

o
m

e
t

Active Runtime

External

Interaction

Handler

Invocation

Sandbox

Policies

ASO1
data
code

ASO Extension API

The ASO Extension API

Applications Customizations

Vanish

Replication

Timeout

One-time values

Adeona
Password access

Access logging

P2P File Sharing
Smart tracker

Recursive gets

P2P Twitter
Publish / subscribe

Hierarchical pub/sub

Measurement
Node lifetimes

Replica monitoring

The ASO Extension API

 Small yet powerful API for a wide variety of applications

 We built over a dozen application customizations

 We have explicitly chosen not to support:

 Sending arbitrary messages on the Internet

 Doing I/O operations

 Customizing routing … 20

Intercept

accesses

Periodic

Tasks

Host

Interaction

DHT

Interaction

onPut(caller) onTimer() getSystemTime() get(key, nodes)

onGet(caller) getNodeIP() put(key, data, nodes)

onUpdate(caller) getNodeID() lookup(key)

getASOKey()

deleteSelf()

The ASO Sandbox

21

1. Limit ASO‟s knowledge and access

 Use a standard language-based sandbox

 Make the sandbox as small as possible (<5,000 LOC)

 Start with tiny Lua language and remove unneeded functions

2. Limit ASO‟s resource consumption

 Limit per-handler bytecode instructions and memory

 Rate-limit incoming and outgoing ASO requests

3. Restrict ASO‟s DHT interaction

 Prevent traffic amplification and DDoS attacks

 ASOs can talk only to their neighbors, no recursive requests

Comet Prototype

 We built Comet on top of Vuze and Lua

 We deployed experimental nodes on PlanetLab

 In the future, we hope to deploy at a large scale

 Vuze engineer is particularly interested in Comet for

debugging and experimentation purposes

22

Outline

 Motivation

 Architecture

 Applications

 Conclusions

23

Applications Customization Lines of Code

Vanish

Security-enhanced replication 41

Flexible timeout 15

One-time values 15

Adeona
Password-based access 11

Access logging 22

P2P File Sharing
Smart Bittorrent tracker 43

Recursive gets* 9

Publish/subscribe 14
P2P Twitter

Hierarchical pub/sub* 20

Measurement
DHT-internal node lifetimes 41

Replica monitoring 21

Comet Applications

24

* Require signed ASOs (see paper)

Three Examples

1. Application-specific DHT customization

2. Context-aware storage object

3. Self-monitoring DHT

25

 Example: customize the replication scheme

 We have implemented the Vanish-specific replication

 Code is 41 lines in Lua

1. Application-Specific DHT Customization

function aso:selectReplicas(neighbors)

[...]

end

function aso:onTimer()

neighbors = comet.lookup()

replicas = self.selectReplicas(neighbors)

comet.put(self, replicas)

end

26

2. Context-Aware Storage Object

 Traditional distributed trackers return a randomized

subset of the nodes

 Comet: a proximity-based distributed tracker

 Peers put their IPs and Vivaldi coordinates at torrentID

 On get, the ASO computes and returns the set of

closest peers to the requestor

 ASO has 37 lines of Lua code

27

Proximity-Based Distributed Tracker

28

Comet tracker

Random tracker

 Example: monitor a remote node‟s neighbors

 Put a monitoring ASO that “pings” its neighbors periodically

 Useful for internal measurements of DHTs

 Provides additional visibility over external measurement

(e.g., NAT/firewall traversal)

3. Self-Monitoring DHT

29

aso.neighbors = {}

function aso:onTimer()

neighbors = comet.lookup()

self.neighbors[comet.systemTime()] = neighbors

end

Example Measurement: Vuze Node Lifetimes

30

Vuze Node Lifetime (hours)

External measurement

Comet Internal measurement

Outline

 Motivation

 Architecture

 Evaluation

 Conclusions

31

Conclusions

 Extensibility allows a shared storage system to support

applications with different needs

 Comet is an extensible DHT that allows per-application

customizations

 Limited interfaces, language sandboxing, and resource and

communication limits

 Opens DHTs to a new set of stronger applications

 Extensibility is likely useful in data centers (e.g., S3):

 Assured delete

 Logging and forensics

32

 Storage location awareness

 Popularity

