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Distributed Key/Value Stores

 A simple put/get interface

 Great properties: scalability, availability, reliability

 Increasingly popular both within data centers and in P2P
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 Increasingly, key/value stores are shared by many apps

 Avoids per-app storage system deployment

 However, building apps atop today‟s stores is challenging

Distributed Key/Value Storage Services
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Challenge: Inflexible Key/Value Stores

 Applications have different (even conflicting) needs:

 Availability, security, performance, functionality

 But today‟s key/value stores are one-size-fits-all

 Motivating example: our Vanish experience
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 Vanish is a self-destructing data system built on Vuze

 Vuze problems for Vanish:

 Fixed 8-hour data timeout

 Overly aggressive replication, which hurts security

 Changes were simple, but deploying them was difficult:

 Need Vuze engineer

 Long deployment cycle

 Hard to evaluate before                                                                

deployment

Motivating Example: Vanish [USENIX Security „09]
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Question:

How can a key/value store support many 

applications with different needs?



Extensible Key/Value Stores

 Allow apps to customize store‟s functions

 Different data lifetimes

 Different numbers of replicas

 Different replication intervals

 Allow apps to define new functions

 Tracking popularity: data item counts the number of reads

 Access logging: data item logs readers‟ IPs

 Adapting to context: data item returns different values to 

different requestors
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Design Philosophy

 We want an extensible key/value store

 But we want to keep it simple!

 Allow apps to inject tiny code fragments (10s of lines of code)

 Adding even a tiny amount of programmability into key/value 

stores can be extremely powerful

 This paper shows how to build extensible P2P DHTs

 We leverage our DHT experience to drive our design
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Outline

 Motivation

 Architecture

 Applications

 Conclusions
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Comet

 DHT that supports application-specific customizations

 Applications store active objects instead of passive values

 Active objects contain small code snippets that control their 

behavior in the DHT
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Comet‟s Goals

 Flexibility

 Support a wide variety of small, lightweight customizations

 Isolation and safety

 Limited knowledge, resource consumption, communication

 Lightweight

 Low overhead for hosting nodes
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Active Storage Objects (ASOs)

 The ASO consists of data and code

 The data is the value

 The code is a set of handlers that are called on put/get
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 Each replica keeps track of number of gets on an object

 The effect is powerful:

 Difficult  to track object popularity in today‟s DHTs

 Trivial to do so in Comet without DHT modifications

Simple ASO Example 
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ASO

data

code

aso.value = “Hello world!”

aso.getCount = 0

function onGet()

self.getCount = self.getCount + 1

return {self.value, self.getCount}

end



Local Store

Comet Architecture
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The ASO Extension API

Applications Customizations

Vanish

Replication

Timeout

One-time values

Adeona
Password access

Access logging

P2P File Sharing 
Smart tracker

Recursive gets

P2P Twitter
Publish / subscribe

Hierarchical pub/sub

Measurement
Node lifetimes

Replica monitoring



The ASO Extension API

 Small yet powerful API for a wide variety of applications

 We built over a dozen application customizations

 We have explicitly chosen not to support:

 Sending arbitrary messages on the Internet

 Doing I/O operations

 Customizing routing … 20
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onPut(caller) onTimer() getSystemTime() get(key, nodes)

onGet(caller) getNodeIP() put(key, data, nodes)

onUpdate(caller) getNodeID() lookup(key)

getASOKey()

deleteSelf()



The ASO Sandbox
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1. Limit ASO‟s knowledge and access

 Use a standard language-based sandbox

 Make the sandbox as small as possible (<5,000 LOC)

 Start with tiny Lua language and remove unneeded functions

2. Limit ASO‟s resource consumption

 Limit per-handler bytecode instructions and memory

 Rate-limit incoming and outgoing ASO requests

3. Restrict ASO‟s DHT interaction

 Prevent traffic amplification and DDoS attacks

 ASOs can talk only to their neighbors, no recursive requests



Comet Prototype

 We built Comet on top of Vuze and Lua

 We deployed experimental nodes on PlanetLab

 In the future, we hope to deploy at a large scale

 Vuze engineer is particularly interested in Comet for 

debugging and experimentation purposes
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Outline

 Motivation

 Architecture

 Applications

 Conclusions
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Applications Customization Lines of Code

Vanish

Security-enhanced replication 41

Flexible timeout 15

One-time values 15

Adeona
Password-based access 11

Access logging 22

P2P File Sharing
Smart Bittorrent tracker 43

Recursive gets* 9

Publish/subscribe 14
P2P Twitter

Hierarchical pub/sub* 20

Measurement
DHT-internal node lifetimes 41

Replica monitoring 21

Comet Applications
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* Require signed ASOs (see paper)



Three Examples

1. Application-specific DHT customization

2. Context-aware storage object

3. Self-monitoring DHT
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 Example: customize the replication scheme

 We have implemented the Vanish-specific replication

 Code is 41 lines in Lua

1. Application-Specific DHT Customization

function aso:selectReplicas(neighbors)

[...]

end

function aso:onTimer()

neighbors = comet.lookup()

replicas = self.selectReplicas(neighbors)

comet.put(self, replicas)

end
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2. Context-Aware Storage Object

 Traditional distributed trackers return a randomized

subset of the nodes

 Comet: a proximity-based distributed tracker 

 Peers put their IPs and Vivaldi coordinates at torrentID

 On get, the ASO computes and returns the set of          

closest peers to the requestor

 ASO has 37 lines of Lua code
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Proximity-Based Distributed Tracker
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 Example: monitor a remote node‟s neighbors

 Put a monitoring ASO that “pings” its neighbors periodically

 Useful for internal measurements of DHTs

 Provides additional visibility over external measurement 

(e.g., NAT/firewall traversal)

3. Self-Monitoring DHT
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aso.neighbors = {}

function aso:onTimer()

neighbors = comet.lookup()

self.neighbors[comet.systemTime()] = neighbors

end



Example Measurement: Vuze Node Lifetimes
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Outline
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 Conclusions
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Conclusions

 Extensibility allows a shared storage system to support 

applications with different needs

 Comet is an extensible DHT that allows per-application 

customizations

 Limited interfaces, language sandboxing, and resource and 

communication limits

 Opens DHTs to a new set of stronger applications

 Extensibility is likely useful in data centers (e.g., S3):

 Assured delete

 Logging and forensics
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 Storage location awareness

 Popularity


